Volodymyr Kulinskyi

2, Dvoryanskaya St, Odesa, 65082, Ukraine 2, Noryanskaya St, Odesa, 65082, Ukraine

🛿 (+38) 097-377-99-30 📔 🕿 kulinskij@onu.edu.ua 📔 🌴 https://orcid.org/0000-0002-5139-843X 📔 🞓 Vladimir Kulinskii

Summary_

- Motivated and experienced lecturer with over 20 year experience lecturing and mentoring post graduate, undergraduate and college students. Teaching strategy is the learning through problem solving building student's personal studying trajectory.
- Researcher with international project experience in phase transitions and critical phenomena, nonequilibrium dynamical transitions in the systems of self-propelling particles, point-like and low-dimensional quantum defects in condensed matter with possible applications to quantum computing hardware.

Education

I.I. Mechnikov Odessa State University	Odessa, UA
PHD THEORETICAL PHYSICS	1992 - 1995
 Thesis: Canonical formalism for the description of critical phenomena in simple liquids Advisor: Prof. M.P. Malomuzh 	
I.I. Mechnikov Odessa State University	Odessa, UA
B.S. and M.S. in Theoretical Physics	1985 - 1992
Experience	
Department of Theoretical Physics and Astronomy, I.I. Mechnikov Odessa National	Odessa, UA

University

Professor

- Theoretical research in phase transitions and critical phenomena: simple and complex liquids; nonequilibrium dynamical transitions in the systems of self-propelling particles, point-like and low-dimensional quantum defects in condensed matter.
- Supervising research projects for PhD and M.S. students.

North Carolina Central University

FULBRIGHT RESEARCH SCHOLAR

- Research project "Global Isomorphism between molecular fluids and the Ising-like models".
- Studied physical structure of singular interactions for 1dim Schrodinger operator including those with the spin-flip mechanism and their applications for spintronics.

Department of Molecular Physics, Taras Shevchenko National University of Kyiv

DOCTOR OF SCI IN PHYS& MATH PROGRAM FELLOW

• Developed novel approach to explain the Zeno-line and the rectilinear diameter linearities and asymmetry of liquid-gas equilibrium.

Leiden University

VISITING SCIENTIST

- Developed hydrodynamical models for the system of self-propelling particles with kineamatic constraints
- Computer simulations of dynamics of self-propelling particle systems

Department of Theoretical Physics, I.I. Mechnikov Odessa National University

Associate Professor

- Theoretical research in phase transitions and critical phenomena: simple and complex liquids. Dynamical transitions in the systems of self-propelling particles subjected to kinematic constraints.
- Leading research projects for PhD and M.S. students.

Department of Theoretical Physics, I.I. Mechnikov Odessa National University Senior Lecturer

- Theoretical research in phase transitions and critical phenomena: simple and complex liquids.
- Practical classes for problem solving on Classical Mechanics
- Leading research projects for M.S. students.

2011 - present

Durham, USA Oct 2017 - Apr 2018

Kyiv, UA

2008 - 2011

Leiden, NL

2003 - 2007

Odessa, UA Sep 2001 – 2008

Odessa, UA

Sep 1998 – 2001

1

Department of Theoretical Physics and Astronomy, Odessa National University

PROFESSOR/LECTURER

- Taught Quantum Mechanics modules (PHYC20020 and PHYC30030) for over 20 B.S. students
- Taught programming lab classes on Modeling of physical processes in Mathematica environment to 6 M.S. students
- Taught Foundations Physics (PHYC10070) course for about 40 B.S. students of pure and applied mathematics departments (since 2020)
- Taught advanced courses: Selected problems in Statistical Physics and Quantum Field Theory, Introduction to Superconductivity for 10 M.S. students

Department of Theoretical Physics, Odessa National University

Associate Professor/Lecturer

- Taught courses Thermodynamics and Statistical Physics (PHYC20100), Quantum Mechanics (PHYC20020), Introduction to Superconductivity for over 20 B.S. students
- Taught advanced courses: Selected problems in Statistical Physics and Quantum Field Theory, Nonequilibrium Thermodynamics and Stochastic Processes for M.S. and postgraduate students

Richelieu Lyceum

PART TIME TEACHER

- Taught basic course "Wolfram Mathematica: an introduction" adopted for college students
- Taught advanced classes with extracurricular problems in Physics and Math (1996-2005). This implied that the students' qualification is above the standard high school curriculum and is on the level of the $1^{
 m st}$ - $2^{
 m nd}$ year of the undergraduate program
- Jury member of Olympiad in Physics for talented high school students across Ukraine. and International Tournaments of Young Physicists (IYPT) 2008-2019

Mentoring

5 of my diploma students won 1st prizes on All Ukrainian competitions of student scientific projects in Physics.

- Katts Andriy, Odesa University, PhD thesis: Global isomorphism between Yukawa fluids and the Ising model. Scientific adviser, 2019-2023
- Panchenko Dmytro, Odesa University, PhD thesis: The structure of point perturbations of the Schrödinger operator in one-dimensional and two-dimensional quantum systems. Scientific adviser, 2014-2019
- Chepizhko Oleksander, Odesa University, PhD thesis: Kinetics of the order-disorder transition for the systems of self-propelled particles. Scientific adviser 2012-2015
- Kupriyanova Yulia, Odesa University, PhD thesis: Diffusion motion in colloidal systems in external fields. Scientific adviser 2011-2014
- Ratushnaya Valeria, Leiden University, PhD thesis: Collective Behaviour of Self-Propelling Particles with Conservative Kinematic Constraints. Co-promotor 2003-2007

Volodymyr Kulinskyi 🔸 Curriculum Vitae

Odessa UA 2011 - present

2001 - 2008

Odessa, UA

1996 - 2005, 2020

Odessa, UA

Extracurricular Activity

Executive Director

CHARITY FUND "KTF-ONU"

- Fundraising management for the Department initiatives
- Sponsorship of local STEM education jointly with the Odesa Richelieu Lyceum

Jury member

INTERNATIONAL YOUNG PHYSISICTS TOURNAMENT

Odesa, UA 2016-present

2015, 2017, 2019

Development

- Certified instructor for the course "Mathematica an intorduction", issued by Wolfram Research Inc, 2019
- Academic Teaching Excellence: English as the Medium of Instruction 35hr course delivered by the British Council of Ukraine, certificate of completion, Lviv 1-6 Dec 2015
- Aptis C1 certificate, the British Council of Ukraine, May 2015
- Stanford OpenEdX on-line course "Writing in the Sciences", certificate of completion with distinction, Nov 2013

Skills.

ProgrammingMathematica, LaTeX, Python, CLanguagesUkrainian, Russian, English

Honors & Awards _

2017-2018	8 Fulbright Scholar Award, Fulbright Program in Ukraine	USA
2002	Sign of Excellence in National Education, Ministry of Education of Ukraine	UA
1992-1995	5 Scholarship for young scientists, Council of Ministers of Ukraine	UA
1994-1995	5 G.Soros Scholarship in Physics for Postgraduates, Soros Foundation	UA

Selected Publications (Citations: 400+, WoS&Scopus h-index=13)_____

Quantum Physics	
Singular spin-flip interactions for the 1D Schrödinger operator	
Kulinskii V and Panchenko D	2020
• Physica Scripta (2020) 95 , p. 015205	
Point-Like Rashba Interactions as Singular Self-Adjoint Extensions of the Schrödinger	
Operator in One Dimension Kulinskii V and Panchenko D	2019
Frontiers in Physics, (2019) 7, 44	2019
Mass-jump and mass-bump boundary conditions for singular self-adjoint extensions of	
the Schrödinger operator in one dimension	
Kulinskii V and Panchenko D	2019
• Annals of Physics, (2019) 404 , pp. 47 - 56	
Physical structure of point-like interactions for one-dimensional Schrödinger operator	
and the gauge symmetry	
KULINSKII V AND PANCHENKO D	2015
 Physica B: Condensed Matter, (2015) 472, pp. 78-83 Localized states near the Abrikosov vortex core in type-II superconductors wihin 	
zero-range potential model	
KULINSKII V AND PANCHENKO D	2015
• Nanosystems: Physics, Chemistry, Mathematics, (2015) 6 , pp. 353-360	
Statistical Physics and Phase Transitions	
The parameters of the Liquid-Gas state triangle for hard core attractive Yukawa fluids	
KATTS A AND KULINSKII V	2023
Journal of Physical Chemistry B, (2023) 127 , pp. 8468-8475a Global isomorphism approach: attractive Yukawa fluid, 2D case	
Katts A and Kulinskii V	2023
Journal of Molecular Liquids, (2023) 388 , pp. 122736	
Hard-core attractive Yukawa fluid global isomorphism with the lattice gas model	
Katts A and Kulinskii V	2022
Journal of Chemical Physics, (2022) 156 , pp. 244104	
Surface tension of molecular liquids: Lattice gas approach	2017
Maslechko A and Glavatskiy K, and Kulinskii V Journal of Molecular Liquids, (2017) 235, pp. 119 - 125 	2017
Surface Tension of the Liquid – Vapor Interface of the Lennard-Jones Fluids from the	
Ising Model	
KULINSKII V AND MASLECHKO A	2016
• J. Phys. Chem. C, (2016) 120 , pp. 8790-8803	
The critical compressibility factor value: Associative fluids and liquid alkali metals	
KULINSKII V	2014
 J. Chem. Phys. 141 (2014), p. 054503 The Critical Compressibility Factor of Fluids from the Global Isomorphism Approach 	
Kulinskii V	2013
 J. Chem. Phys., 139 (2013), p. 184119 	2010
The Vliegenthart-Lekkerkerker relation. The case of the Mie-fluids	
Kulinskii V	2011
• J. Chem. Phys., (2011) 134 , p. 144111	
The Unified picture for the Classical Laws of Batschinski and the Rectilinear diameter for Molecular Fluids	
Motecular Fluids Bulavin L and Kulinskii V	2011
 J. Phys. Chem. B, (2011) 115, pp. 6061-6068 	2011
Communication: The Application of the Global Isomorphism to the Study of	
Liquid-Vapor Equilibrium in Two and Three-Dimensional Lennard-Jones Fluids	
Kulinskii V	2010
• J. Chem. Phys., (2010) 133 , p. 131102	
Global Isomorphism between the Lennard-Jones Fluids and the Ising model	
	2010
• J. Chem. Phys., (2010) 133 , p. 034121	

Generalized principle of corresponding states and the scale invariant mean-field approach	
Bulavin L and Kulinskii V	2010
• J. Chem. Phys., (2010) 133 , p. 134101	
Simple Geometrical Interpretation of the Linear Character for the Zeno-Line and the	
Rectilinear Diameter	
Kulinskii V	2010
• J. Phys. Chem. B, (2010) 114 , pp. 2852-2855	
New version of the fluctuation Hamiltonian for liquids near the critical point	
Kulinskii V and Malomuzh N	2010
• Journal of Molecular Liquids 158 , (2011) pp. 166-169	
Dynamics of self-propelling particle systems	
The hydrodynamic description for the system of self-propelled particles: Ideal Vicsek	
fluid	
Chepizhko O and Kulinskii V	2014
Physica A: Statistical Mechanics and its Applications, (2014) 415, pp. 493 - 502	
On the relation between Vicsek and Kuramoto models of spontaneous synchronization	
Chepizhko O and Kulinskii V	2010
 Physica A: Statistical Mechanics and its Applications, (2010) 389, pp. 5347 - 5352 Collective behavior of self-propelling particles with kinematic constraints: The relation 	
between the discrete and the continuous description	
Ratushnaya V, Bedeaux D, Kulinskii V and Zvelindovsky A	2007
• Physica A: Statistical Mechanics and its Applications, (2007) 381, pp. 39-46	
Hydrodynamic model for the system of self propelling particles with conservative	
kinematic constraints; two dimensional stationary solutions	
Ratushnaya V, Kulinskii V , Bedeaux D, and Zvelindovsky A	2006
Physica A: Statistical Mechanics and its Applications, (2006) textbf366, pp. 107-114	
Hydrodynamic model for a system of self-propelling particles with conservative	
kinematic constraints	
Kulinskii V, Ratushnaya V, Bedeaux D, and Zvelindovsky A	2005
• Europhys. Lett., (2005) 71 , pp. 207-213	